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Abstract-Consider the elasto-static problem in which the contact between two compressed dis­
similar elastic half-spaces is perturbed by disc inclusions of various constant thicknesses, but
arbitrary shapes. We show that the interfacial normal displacement is zero where the half-spaces
are in contact, and present some generalizations of the result.

I. INTRODUCTION

In a recent paper Selvadurai (1993) considered the problem of a rigid disc inclusion of
constant thickness (i.e. a penny) compressed between dissimilar isotropic elastic half-spaces,
as shown in Fig. 1. He formulated this axisymmetric problem in terms of Hankel transforms
and found, during the course of extensive manipulation, that

(1) the displacements A), A2 are related by

(1)

where 8; = IlJ(I-v;);
(2) the contact stresses on either side of the inclusion are identical;
(3) the normal displacements in the region where the half-spaces are in contact are not

only equal, but are separately zero.

Selvadurai's configuration is axisymmetric and it is not immediately clear whether
these results, in particular (3), are a consequence of this axisymmetry. Selvadurai's problem
involves complete contact; the two half-spaces are in contact with the penny over the whole
of the upper and lower faces. Gladwell and Hara (1981) had considered the incomplete
contact problem for a rigid inclusion with faces z = ±jj(r), where

(2)

It is interesting to note that their Fig. 1 (a sketch) shows the normal displacements equal, but
not necessarily zero, where the half-spaces are in contact (for r ?" l). Later, in commenting on
their numerical results they state "Note that the approximate w is not zero, as it should be,
outside r = I". The italics are ours, and indeed on closer inspection we note that w need
not be zero outside r = I. In fact there is only one easily identifiable case in which w will be
zero outside r = I; when 81 = 82,j;(r) == her), when the whole configuration is symmetrical
about z = O. However, as we will now show, the three results listed above hold for an
arbitrarily shaped rigid inclusion of constant thickness compressed between two half-spaces.
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Fig. 1. A rigid disc inclusion of constant thickness compressed between two dissimilar isotropic

elastic half-spaces.

2. PAPKOVICH-NEUBER SOLUTIONS

We start with the familiar Papkovich-Neuber (P-N) representation (Gladwell, 1980)

2,ud = 4(1-v)'I'-V{(r' qt)+<1>} (3)

for the elastic displacement d == (u, v, w) in a medium with parameters,u, v. We suppose that
there are no body forces, so that 'I' and <1> are harmonic, i.e.

A'I' = 0, A<1> = O. (4)

It is well known that for many regions, of which a half-space is one, it is possible to choose
'I' so that one of its components, say qt b is zero. This is achieved by subtracting from the
given solution ('I', <1» a null solution ('1'0, <1>0) having qt? = qt l' A null P-N solution is one
for which

It is easily shown that ('1'0, <1>0) is null if

'1'0 = VH where AH = 0

<1> = 4(1-v)H-V(r o VH).

Thus if qt1 is to be annihilated, we must choose H, harmonic, such that

(5)

(6)

(7)

(8)

Barber (1992) shows how this may be done.
In our problem we are concerned with special P~N solutions, for the half-space z ~ 0

with the surface z = 0, i.e. the x,y-plane D, free of shearing stress. In such cases we
customarily take
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(9)

(10)

However, because this choice is crucial to our later argument, we first establish that it is
always available, i.e. that if ('P, <1» corresponds to an elastic field in z ~ 0, and

T xz = °= Tyz (x,y) ED,

then we can find a null field ('PO, <1>0) such that

To prove this, we proceed as follows.
Equation (3) shows that the rotation component in the z-direction is

It is harmonic because \PI and \P2are harmonic. The stress-strain equations give

ihyz _ OTxz = P. (02 V _ 02 U ) = 2p. ow
ox oy oxoz oyoz oz .

Consider the integral

over the half-space. Since w is harmonic,

div(wVw) = wLlW+(VW)2 = (VW)2

and the divergence theorem gives

i ow
J= - w-dS;

D OZ

(11)

(12)

(13)

(14)

(15)

(16)

(17)

the necessary regularity conditions on w at infinity are very weak. But eqns (11) and (14)
show that

ow/oz=o, (x,y)ED. (18)

Hence J = 0, Vw == 0 and w = constant = °if we take the displacement d zero at infinity.
Equation (13) therefore shows that any P-N solution for the half-space with D free of shear
stress must satisfy
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(19)

This is clearly a necessary condition for the existence of an H satisfying eqn (12). Now we
must find a harmonic H to satisfy eqn (12). To do this, we first construct

(20)

This satisfies eqn (12), but is not harmonic. However

so that we need only find H 2 = Hiz) such that

I1H2 = H'Hz) = -j(z).

For this we may take

H 2 = I (t-z)j(t) dt

(21)

(22)

(23)

and then H = HI +H 2 is the required harmonic function.
We note that all the operations described, such as the integrations in eqns (20) and

(23) are unambiguous in the half-space. We have established eqn (9) ; eqn (10) now follows
easily from the explicit expressions for 'w 'yz in terms of 'II3 and <]).

3. ANALYSIS OF THE CONTACT PROBLEM

Suppose that instead of being circular, the inclusion occupies a region D 1 in the x,y­
plane, there is a separation zone D 2, and the half-spaces are in contact over the remainder,
D 3, of the x,y-plane D.

The elastic solution for each half-space may be obtained as the superposition of two
fields. The first corresponds to a uniform stress field in the z-direction, namely ,~~) = -Po,
for which the normal displacments are given by

(24)

The second may be obtained from a P-N solution

(25)

where dJ == (Ui' vi' w) is the vector of elastic displacements in the half-spaces (1) z ~ 0, (2)
z ~ O. Since there are no body forces present, the potentials 'PU) and <])(j) are harmonic.

There are no shearing stresses on the interface, so that

The analysis of section 2 shows that we may take 'P(j) = (0,0, '¥j) and

(1- 2vJ'Pj = 8<])(j) /8z, j = 1,2.

This yields

(26)

(27)
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so that the boundary conditions for the 'Pj are

0'P 1 0'P2
oz oz (x,y) ED3 •

In addition there is the equilibrium condition for the inclusion, namely

i (O'PI - 0'P2 )dS = 0
D oz OZ

I

and the regularity conditions at infinity, namely

387

(28)

(29)

(30)

(31)

(32)

(33)

(34)

The potential 'PI is harmonic in the upper half-space, and 'P2 in the lower half-space.
Define

'P!(x,y,z) = -'P2 (x,y,-z) (35)

so that 'P! is harmonic in the upper half-space V. The conditions (29)-(33) translate into
conditions for 'P 1, 'P! on D, namely

0'P 1 0'P!
-=- (x,Y)ED 3OZ oz

i (O'P I - O'P!) dS = o.
D oz OZ

I

Consider the integral

taken over the upper half-space. Since 'P 1 - 'P! is harmonic in V, we have

(36)

(37)

(38)

(39)

(40)

(41)
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(42)

On the other hand, Gauss' theorem gives

(43)

The conditions (37)-(39) show that there is no contribution to I from D 2 or D3• On D 1 both
'¥1 and '¥~ are constant so that

(44)

and this is zero because of the equilibrium condition (41). Thus I == 0, and hence, from eqn
(42), '¥ 1 - '¥! = const and the regularity condition (34) shows that this must be zero.
Therefore

'¥1(X,Y,Z) = '¥!(x,y,z) = -'¥2(X,Y, -z)

from which the results (1)-(3) immediately follow.

(45)

4. GENERALIZAnONS

In this argument we have implicitly considered the region D 1 occupied by the inclusion
to be connected, so that there is just one equilibrium condition (40). However, D j may be
made up of a number of connected regions, so that

(46)

and the inclusions may be of different thicknesses. Then the boundary conditions are

and the equilibrium conditions are

f (O'¥ j - O'¥!) dS = 0,
O 0

i = 1,2, ... , n.
D Z Z

u

Again the argument holds and result (1) generalizes to

(47)

(48)

(49)

while (2) holds for each inclusion and (3) still holds.
Even though the results hold in this generalized configuration, a reviewer correctly

commented that it is difficult to visualize a situation in which two inclusions of different
thickness near to each other could maintain contact over all D j • For an example, we can
consider two circular disc inclusions of different thicknesses which are almost in contact
with each other; separation will occur over some part of the thinner inclusion.

To generalize the result further we note that the integral lin eqn (43) may be written
as in eqn (44) provided that '¥ 1 - '¥! is constant on D 1 ; '¥1 and '¥! do not have to be
separately zero. Again I will be zero and eqn (45) will follow. To use this we note that if
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the faces of the inclusion are plane then we may apply a rigid body rotation, of which the
z-component is

w = rxx+fJy, (50)

to the whole space, to make '1'1 - 'I'~ constant on D]. (We can always do this provided that
D] is connected; if it is made up of connected regions D 1i> we can do it provided that the
plane faces of the rigid inclusions in contact with the half-space z > 0 are all parallel, as
are those in contact with the half-space z < 0.) Thus the inclusion(s) will align themselves
so that, in the new frame of reference

(51)

while results (2) and (3) listed in section I will still hold, the latter again in the new frame
of reference. If the faces of the plane depart from planes, then the contact between them
and the half-spaces will be incomplete and the analysis will fail.

Acknowledgement-I am indebted to James R. Barber for suggesting the last generalization, and for making many
insightful comments on an earlier version of this paper. He also pointed out that the whole analysis may be
generalized to the case of two transversely isotropic half-spaces.
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